11,652 research outputs found

    Global Charges in Chern-Simons theory and the 2+1 black hole

    Full text link
    We use the Regge-Teitelboim method to treat surface integrals in gauge theories to find global charges in Chern-Simons theory. We derive the affine and Virasoro generators as global charges associated with symmetries of the boundary. The role of boundary conditions is clarified. We prove that for diffeomorphisms that do not preserve the boundary there is a classical contribution to the central charge in the Virasoro algebra. The example of anti-de Sitter 2+1 gravity is considered in detail.Comment: Revtex, no figures, 26 pages. Important changes introduced. One section added

    Fatty-acid uptake in prostate cancer cells using dynamic microfluidic raman technology

    Get PDF
    It is known that intake of dietary fatty acid (FA) is strongly correlated with prostate cancer progression but is highly dependent on the type of FAs. High levels of palmitic acid (PA) or arachidonic acid (AA) can stimulate the progression of cancer. In this study, a unique experimental set-up consisting of a Raman microscope, coupled with a commercial shear-flow microfluidic system is used to monitor fatty acid uptake by prostate cancer (PC-3) cells in real-time at the single cell level. Uptake of deuterated PA, deuterated AA, and the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were monitored using this new system, while complementary flow cytometry experiments using Nile red staining, were also conducted for the validation of the cellular lipid uptake. Using this novel experimental system, we show that DHA and EPA have inhibitory effects on the uptake of PA and AA by PC-3 cells

    Posttranslational modification of a neurofilament protein during axoplasmic transport: implications for regional specialization of CNS axons

    Get PDF
    The possibility that proteins are modified during axoplasmic transport in central nervous system axons was examined by analyzing neurofilament proteins (200,000, 140,000, and 70,000 mol wt) along the mouse primary optic pathway (optic nerve and optic tract). The major neurofilament proteins (NFPs) exhibited considerable microheterogeneity. At least three forms of the “ 140,000” neurofilament protein differing in molecular weight by SDS PAGE (140,000-145,000 mol wt) were identified. The “140,000” proteins, and their counterparts in purified neurofilament preparations, displayed similar isoelectric points and the same peptide maps. The “140,000” NFPs exhibited regional heterogeneity when consecutive segments of the optic pathway were separately examined on polyacrylamide gels. Two major species (145,000 and 140,000 mol wt) were present along the entire length of the optic pathway. The third protein (143,000 mol wt) was absent proximally but became increasingly prominent in distal segments. After intravitreal injection of [(3)H]proline, newly synthesized radiolabeled proteins in the “140,000” mol wt region entered proximal mouse retinal ganglion cell (RGC) axons as two major species corresponding to the 145,000 and 14,000 mol wt NFPs observed on stained gels. When transported NFPs reached more distal axonal regions (30 d postinjection or longer), a 143,000 mol wt protein appeared that was similar in isoelectric point and peptide map to the 145,000 and 140,000 mol wt species. The results suggest that (a) the composition of CNS neurofilaments, particularly the “140,000” component, is more complex than previously recognized, that (b) retinal ganglion cell axons display regional differentiation with respect to these cytoskeletal proteins, and that (c) structural heterogeneity of “140,000” NFPs arises, at least in part, from posttranslational modification during axoplasmic transport. When excised but intact optic pathways were incubated in vitro at pH 7.4, a 143,000 NFP was rapidly formed by a calcium-dependent enzymatic process active at endogenous calcium levels. Changes in major proteins other than those in the 145,000-140,000 mol wt region were minimal. In optic pathways from mice injected intravitreally with L-[(3)H]proline, tritiated 143,000 mol wt NFP formed rapidly in vitro if radioactively labeled NFPs were present in distal RGC axonal regions (31 d postinjection). By contrast, no 143,000 mol wt NFP was generated if radioactively labeled NFPs were present proximally in RGC axons (6 d postinjection). The enzymatic process that generates 143,000 mol wt NFP in vitro, therefore, appears to have a nonuniform distribution along the RGC axons. The foregoing results and other observations, including the accompanying report (J. Cell Biol., 1982, 94:159-164), imply that CNS axons may be regionally specialized with respect to structure and function

    Abnormal Epidermal Keratinization in the repeated epilation mutant mouse

    Get PDF
    Repeated epilation (Er) is a radiation-induced, autosomal, incomplete dominant mutation in mice which is expressed in heterozygotes but is lethal in the homozygous condition. Many effects of the mutation occur in skin: the epidermis in Er/Er mice is adhesive (oral and nasal orifices fuse, limbs adhere to the body wall), hyperplastic, and fails to undergo terminal differentiation. Skin from fetal +/+, Er/+ and Er/Er mice at ages pre- and postkeratinization examined by light, scanning, and transmission electron microscopy showed marked abnormalities in tissue architecture, differentiation, and cell structure; light and dark basal epidermal cells were separated by wide intercellular spaces, joined by few desmosomes, and contained phagolysomes. The numbers of spinous, granular, and superficial layers were highly variable within any given region and among various regions of the body. In some areas, 2-8 layers of granular cells, containing large or diminutive keratohyalin granules, extended to the epidermal surface; in others, the granular layers were covered by several layers of partially keratinized or nonkeratinized cells. In rare instances, a single or small group of cornified cells was present among the granular layers but was not associated with the epidermal surface. Both the granular and nonkeratinized/partially keratinized upper epidermal layers Er/Er skin gave positive immunofluorescence with antiserum to the histidine-rich, basic protein, filaggrin. Proteins in epidermal extracts from +/+, Er/+ and Er/Er mice were separated and identified by radio- and immunolabeling techniques. The Er/Er extract was missing a 26.5- kdalton protein and had an altered ratio of bands in the keratin region. The 26.5-kdalton band was histidine-rich and cross-reacted with the antiserum to rat filaggrin. Several high molecular weight bands present in both Er/Er and +/+ extracts also reacted with the antiserum. These are presumed to be the precursors of filaggrin and to account for the immunofluorescence om Er/Er epidermis even though the product protein is absent. The morphologic and biochemical data indicated that the genetic defect has a general and profound influence on epidermal differentiation, including alteration of two proteins (filaggrin and keratin) important in normal terminal differentiation, tissue architecture, and cytology. Identification of epidermal abnormalities at early stages of development (prekeratinization) and defective structure of other tissues and gross anatomy suggest that the mutation is responsible for a defect in same regulatory step important in many processes of differentiation and development

    Algorithms for the analysis of ensemble neural spiking activity using simultaneous-event multivariate point-process models

    Get PDF
    Understanding how ensembles of neurons represent and transmit information in the patterns of their joint spiking activity is a fundamental question in computational neuroscience. At present, analyses of spiking activity from neuronal ensembles are limited because multivariate point process (MPP) models cannot represent simultaneous occurrences of spike events at an arbitrarily small time resolution. Solo recently reported a simultaneous-event multivariate point process (SEMPP) model to correct this key limitation. In this paper, we show how Solo's discrete-time formulation of the SEMPP model can be efficiently fit to ensemble neural spiking activity using a multinomial generalized linear model (mGLM). Unlike existing approximate procedures for fitting the discrete-time SEMPP model, the mGLM is an exact algorithm. The MPP time-rescaling theorem can be used to assess model goodness-of-fit. We also derive a new marked point-process (MkPP) representation of the SEMPP model that leads to new thinning and time-rescaling algorithms for simulating an SEMPP stochastic process. These algorithms are much simpler than multivariate extensions of algorithms for simulating a univariate point process, and could not be arrived at without the MkPP representation. We illustrate the versatility of the SEMPP model by analyzing neural spiking activity from pairs of simultaneously-recorded rat thalamic neurons stimulated by periodic whisker deflections, and by simulating SEMPP data. In the data analysis example, the SEMPP model demonstrates that whisker motion significantly modulates simultaneous spiking activity at the 1 ms time scale and that the stimulus effect is more than one order of magnitude greater for simultaneous activity compared with non-simultaneous activity. Together, the mGLM, the MPP time-rescaling theorem and the MkPP representation of the SEMPP model offer a theoretically sound, practical tool for measuring joint spiking propensity in a neuronal ensemble

    A comparison of Noether charge and Euclidean methods for Computing the Entropy of Stationary Black Holes

    Full text link
    The entropy of stationary black holes has recently been calculated by a number of different approaches. Here we compare the Noether charge approach (defined for any diffeomorphism invariant Lagrangian theory) with various Euclidean methods, specifically, (i) the microcanonical ensemble approach of Brown and York, (ii) the closely related approach of Ba\~nados, Teitelboim, and Zanelli which ultimately expresses black hole entropy in terms of the Hilbert action surface term, (iii) another formula of Ba\~nados, Teitelboim and Zanelli (also used by Susskind and Uglum) which views black hole entropy as conjugate to a conical deficit angle, and (iv) the pair creation approach of Garfinkle, Giddings, and Strominger. All of these approaches have a more restrictive domain of applicability than the Noether charge approach. Specifically, approaches (i) and (ii) appear to be restricted to a class of theories satisfying certain properties listed in section 2; approach (iii) appears to require the Lagrangian density to be linear in the curvature; and approach (iv) requires the existence of suitable instanton solutions. However, we show that within their domains of applicability, all of these approaches yield results in agreement with the Noether charge approach. In the course of our analysis, we generalize the definition of Brown and York's quasilocal energy to a much more general class of diffeomorphism invariant, Lagrangian theories of gravity. In an appendix, we show that in an arbitrary diffeomorphism invariant theory of gravity, the ``volume term" in the ``off-shell" Hamiltonian associated with a time evolution vector field tat^a always can be expressed as the spatial integral of taCat^a {\cal C}_a, where Ca=0{\cal C}_a = 0 are the constraints associated with the diffeomorphism invariance.Comment: 29 pages (double-spaced) late

    Enteric glia mediate neuron death in colitis through purinergic pathways that require connexin-43 and nitric oxide

    Get PDF
    The concept of enteric glia as regulators of intestinal homeostasis is slowly gaining acceptance as a central concept in neurogastroenterology. Yet how glia contribute to intestinal disease is still poorly understood. Purines generated during inflammation drive enteric neuron death by activating neuronal P2X7 purine receptors (P2X7R), triggering ATP release via neuronal pannexin-1 channels that subsequently recruits intracellular calcium ([Ca(2+)]i) responses in the surrounding enteric glia. We tested the hypothesis that the activation of enteric glia contributes to neuron death during inflammation.We studied neuroinflammation in vivo using the 2,4-dinitrobenzenesulfonic acid model of colitis and in situ using whole-mount preparations of human and mouse intestine. Transgenic mice with a targeted deletion of glial connexin-43 (Cx43) [GFAP∷Cre (ERT2+/-)/Cx43(f/f) ] were used to specifically disrupt glial signaling pathways. Mice deficient in inducible nitric oxide (NO) synthase (iNOS (-/-)) were used to study NO production. Protein expression and oxidative stress were measured using immunohistochemistry and in situ Ca(2+) and NO imaging were used to monitor glial [Ca(2+)]i and [NO]i.Purinergic activation of enteric glia drove [Ca(2+)]i responses and enteric neuron death through a Cx43-dependent mechanism. Neurotoxic Cx43 activity, driven by NO production from glial iNOS, was required for neuron death. Glial Cx43 opening liberated ATP and Cx43-dependent ATP release was potentiated by NO.Our results show that the activation of glial cells in the context of neuroinflammation kills enteric neurons. Mediators of inflammation that include ATP and NO activate neurotoxic pathways that converge on glial Cx43 hemichannels. The glial response to inflammatory mediators might contribute to the development of motility disorders

    Black Hole Entropy and the Dimensional Continuation of the Gauss-Bonnet Theorem

    Full text link
    The Euclidean black hole has topology 2×Sd2\Re^2 \times {\cal S}^{d-2}. It is shown that -in Einstein's theory- the deficit angle of a cusp at any point in 2\Re^2 and the area of the Sd2{\cal S}^{d-2} are canonical conjugates. The black hole entropy emerges as the Euler class of a small disk centered at the horizon multiplied by the area of the Sd2{\cal S}^{d-2} there.These results are obtained through dimensional continuation of the Gauss-Bonnet theorem. The extension to the most general action yielding second order field equations for the metric in any spacetime dimension is given.Comment: 7 pages, RevTe

    Robust spectrotemporal decomposition by iteratively reweighted least squares

    Get PDF
    Classical nonparametric spectral analysis uses sliding windows to capture the dynamic nature of most real-world time series. This universally accepted approach fails to exploit the temporal continuity in the data and is not well-suited for signals with highly structured time–frequency representations. For a time series whose time-varying mean is the superposition of a small number of oscillatory components, we formulate nonparametric batch spectral analysis as a Bayesian estimation problem. We introduce prior distributions on the time–frequency plane that yield maximum a posteriori (MAP) spectral estimates that are continuous in time yet sparse in frequency. Our spectral decomposition procedure, termed spectrotemporal pursuit, can be efficiently computed using an iteratively reweighted least-squares algorithm and scales well with typical data lengths. We show that spectrotemporal pursuit works by applying to the time series a set of data-derived filters. Using a link between Gaussian mixture models, ℓ[subscript 1] minimization, and the expectation–maximization algorithm, we prove that spectrotemporal pursuit converges to the global MAP estimate. We illustrate our technique on simulated and real human EEG data as well as on human neural spiking activity recorded during loss of consciousness induced by the anesthetic propofol. For the EEG data, our technique yields significantly denoised spectral estimates that have significantly higher time and frequency resolution than multitaper spectral estimates. For the neural spiking data, we obtain a new spectral representation of neuronal firing rates. Spectrotemporal pursuit offers a robust spectral decomposition framework that is a principled alternative to existing methods for decomposing time series into a small number of smooth oscillatory components.National Institutes of Health (U.S.) (Transformative Research Award GM 104948)National Institutes of Health (U.S.) (New Innovator Award R01-EB006385
    corecore